

Topics : Solution of Triangle, Application of Derivatives, Straight Line					
Type of Questions					M.M., Min.
Single Multip Subje	e choice Objectiv ble choice object ctive Questions (re (no negative mar ive (no negative ma (no negative markiı	king) Q.1,2,3,4 arking) Q.5,6 ng) Q.7,8	(3 marks, 3 min.) (5 marks, 4 min.) (4 marks, 5 min.)	[12, 12] [10, 8] [8, 10]
1.	In a ∆ABC, a = 5,	b = 4 and tan $\frac{C}{2} = \sqrt{\frac{7}{9}}$, then the side c is eq	ual to	
	(A) 2	(B) 3	(C) 6	(D) None of the	se
2.	In a triangle ABC (A) 1	, if a³ cos (B – C) + b³ (B) 2	³ cos(C – A) + c ³ cos (C) 3	$(A - B) = \lambda$ abc, then ' λ ' is (D) None of the	equal to ese
3.	With usual notation	ns, in a $\triangle ABC \frac{r_1}{(s-b)(s-b)}$	$\frac{r_2}{(s-c)(s-a)}$ + $\frac{r_2}{(s-c)(s-a)}$	+ $\frac{r_3}{(s-a)(s-b)}$ is equal to	
	(A) ¹ / _r	(B) <mark>2</mark> r	(C) $\frac{3}{r}$	(D) $\frac{4}{r}$	
4.	Let $f(x) = \begin{bmatrix} \sin \frac{\pi x}{2} \\ 3 - 2x \end{bmatrix}$, $0 \le x < 1$ then : , $x \ge 1$			
	 (A) f(x) has local maxima at x = 1 (B) f(x) has local minima at x = 1 (C) f(x) does not have any local extrema at x = 1 (D) f(x) has a global minima at x = 1 				
5.	In a $\triangle ABC$, if a + b = 3c, then cosA + cosB is equal to				
	(A) 3cos C	(B) 6 sin ² $\frac{C}{2}$	(C) 3 cos (A	+ B) (D) 3 + 3 cos (/	A + B)
6.	If $H \equiv (3, 4)$ and $C \equiv (1, 2)$ are orthocentre and circumcentre of $\triangle PQR$ and equation of side PQ is $x - y + 7 = 0$, then (A) equation of circum circle $(x - 1)^2 + (y - 2)^2 = 80$ (B) equation of circum circle $(x - 1)^2 + (y - 2)^2 = 70$				
	(C) centroid is $\left(\frac{5}{3}\right)$	$\left(\frac{8}{3},\frac{8}{3}\right)$			
	(D) circumradius	= \sqrt{70}			
7.	The function $f(x) = \sqrt{ax^3 + bx^2 + cx + d}$ has its non zero local minimum and maximum values at $x = -2$ and $x = 2$ respectively. If a is a root of the equation $x^2 - x - 6 = 0$. Find all possible values of a, b, c, and d.				

 $Let \; f(x) = \begin{cases} \mid x-2 \mid +a^2 - 9a - 9 & \text{if} \quad x < 2 \\ 2x - 3 & \text{if} \quad x \geq 2 \end{cases}$

Then find the value of 'a' for which f(x) has local minimum at x = 2

Get More Learning Materials Here :

8.

🕀 www.studentbro.in

Answers Key

- **1.** (C) **2.** (C) **3.** (C) **4.** (A)
- **5.** (B)(D) **6.** (A)(C) **7.** a = -2, b = 0, c = 24, d > 32
- **8.** (−∞, −1] ∪ [10, ∞)

Get More Learning Materials Here : 📕

